Wednesday, December 10, 2014

3-Sphere (Torus)

The trick is to get 3 torus into a single sphere shape.  There should be no ultimate reliance on the single torus model to create a 4 dimensional Euclidean Space topologyPoincare Conjecture and its solution to closed 3-sphere manifold issues show the 3 torus model to be much more accurate than a mere single torus model.

Is it because the form gets too complex with 6 vortexes having to reconcile spin states and coherence that sacred geometry/torus proponents such as Nassim Haramein and Marko Rodin refuse to take into consideration in accordance to multi-dimensional mass, charge and electric fields formed from the primordial aether?
Stereographic projection of the hypersphere's parallels (red), meridians (blue) and hypermeridians (green). Because this projection is conformal, the curves intersect each other orthogonally (in the yellow points) as in 4D. All curves are circles: the curves that intersect <0,0,0,1> have infinite radius (= straight line).

I admit, it is a tough problem and daunting to wrap the mind around, much less dissect.  Think of a sphere with 3 inward rotating vortexes and 3 outward rotating vortexes, and a single convergence area.  The entire construct must be both repulsing and attracting at the same time, even down into the fractal states, past the quantum critical state and through the post-chaos of quantum potential of Werner Heisenberg's Uncertainty Principle

For compact 2-dimensional surfaces without boundary, if every loop can be continuously tightened to a point, then the surface is topologically homeomorphic to a 2-sphere (usually just called a sphere). The Poincaré conjecture asserts that the same is true for 3-dimensional spaces.
The model also needs to be understood that it is homeomorphic to the 3 torus model of 4 dimensional Euclidean Space.  Homeomorphic means that it must be a closed manifold structure/system that is fluid, dynamic and elastic in order to adjust to the infinitude of universal environments of 4 dimensions - dimensions that are both open (infinite) and closed (finite) - with the 3 sphere (torus) having the property Poincare solved; that of having the ability of the spheres to recede to single point without ripping itself apart.  When that stability is reached, the vortexes do not completely collapse or disperse due to each others field influence (attraction/repulsion of dipole magnetic property), but rather cohere within the dynamically balanced (I Ching reference) environment and homeomorphic spin states. (note: synergy of 6 different spin states of the 3 torus, create s standing waves within longitudinal and transverse wave fields).  In other words, quantum entanglement is possible and the connectivity and fluidity of Indra's Net can be expressed through potential and manifestation of potential (manifestation of potential being the Diamonds of Indra's Net).

 - Chad Adams


  1. Chad, do you have any comments on this phi-based VBM model:

  2. how do you arrange them to create this field